A384860 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384856.
1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 16, 28, 0, 1, 4, 27, 98, -107, 0, 1, 5, 40, 216, 304, -11744, 0, 1, 6, 55, 388, 1485, -20638, -519101, 0, 1, 7, 72, 620, 3712, -20592, -1185920, -12366080, 0, 1, 8, 91, 918, 7285, -3836, -1908657, -35662030, -101065751, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 7, 16, 27, 40, 55, ... 0, 28, 98, 216, 388, 620, ... 0, -107, 304, 1485, 3712, 7285, ... 0, -11744, -20638, -20592, -3836, 39200, ...
Programs
-
PARI
b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-2*n+2*j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j))); a(n, k) = b(n, -k);
Formula
Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-2*n+2*j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k).