cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384875 Irregular triangle T(n,k) = 2^(floor(n/3)-k) * nextprime(2^(n-2*(floor(n/3)-k))), with k = 0..floor(n/3)-1.

Original entry on oeis.org

6, 10, 22, 20, 34, 44, 74, 68, 134, 88, 148, 262, 136, 268, 514, 296, 524, 1042, 272, 536, 1028, 2062, 592, 1048, 2084, 4106, 1072, 2056, 4124, 8198, 1184, 2096, 4168, 8212, 16418, 2144, 4112, 8248, 16396, 32822, 4192, 8336, 16424, 32836, 65542, 4288, 8224, 16496, 32792, 65644, 131074
Offset: 3

Views

Author

Michael De Vlieger, Jun 11 2025

Keywords

Examples

			Table begins:
  n\k     0      1      2      3       4
 ---------------------------------------
  3:      6
  4:     10
  5:     22
  6:     20     34
  7:     44     74
  8:     68    134
  9:     88    148    262
 10:    136    268    514
 11:    296    524   1042
 12:    272    536   1028   2062
 13:    592   1048   2084   4106
 14:   1072   2056   4124   8198
 15:   1184   2096   4168   8212   16418
 ...
Let S = A010846.
Tables showing terms in row a(n) of A162306, listed in order of row a(n) of A275280.
T(3,1) = 6,
S(6) = 5:
 1  2  4
 3  6
T(4,1) = 10,
S(10) = 6:
 1  2  4  8
 5 10
T(5,1) = 22,
S(22) = 7:
 1  2  4  8  16
11 22
T(6,1) = 20,               T(6,2) = 34,
S(20) = 8:                 S(34) = 8:
 1  2  4  8  16             1  2  4  8  16  32
 5 10 20                   17 34
T(7,1) = 44,               T(7,2) = 74,
S(44) = 9:                 S(74) = 9:
 1  2  4  8  16  32         1  2  4  8  16  32  64
11 22 44                   37 74
T(8,1) = 68,               T(8,2) = 134,
S(68) = 10:                S(134) = 10:
 1  2  4  8  16  32  64     1  2  4  8  ...  128
17 34 68                   67 134
T(9,1) = 88,               T(9,2) = 148,            T(9,3) = 262,
S(88) = 11:                S(148) = 11:             S(262) = 11:
 1  2  4  8  16  32  64     1  2  4  8  ...  128      1   2  ... 256
11 22 44 88                37 74 148                131 262
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[2^k*NextPrime[2^(n - 2*k)], {n, 3, 18}, {k, Floor[n/3], 1, -1}] // TableForm

Formula

A010846(T(n,k)) = n+2.