cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384877 Irregular triangle read by rows where row k lists the lengths of maximal anti-runs (increasing by more than 1) in the binary indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 182 are {2,3,5,6,8}, with maximal anti-runs ((2),(3,5),(6,8)) so row 182 is (1,2,2).
Triangle begins:
   0: ()
   1: (1)
   2: (1)
   3: (1,1)
   4: (1)
   5: (2)
   6: (1,1)
   7: (1,1,1)
   8: (1)
   9: (2)
  10: (2)
  11: (1,2)
  12: (1,1)
  13: (2,1)
  14: (1,1,1)
  15: (1,1,1,1)
		

Crossrefs

Row-sums are A000120.
Positions of rows of the form (1,1,...) are A023758.
Positions of first appearances of each distinct row appear to be A052499.
For runs instead of anti-runs we have A245563, reverse A245562.
Row-lengths are A384890.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length/@Split[bpe[n],#2!=#1+1&],{n,0,100}]