A384886 Number of strict integer partitions of n with all equal lengths of maximal runs (decreasing by 1).
1, 1, 1, 2, 2, 3, 4, 4, 4, 7, 7, 8, 11, 11, 14, 17, 19, 20, 27, 27, 35, 38, 45, 47, 60, 63, 75, 84, 97, 104, 127, 134, 155, 175, 196, 218, 251, 272, 307, 346, 384, 424, 480, 526, 586, 658, 719, 798, 890, 979, 1078, 1201, 1315, 1451, 1603, 1762, 1934, 2137
Offset: 0
Examples
The strict partition y = (7,6,5,3,2,1) has maximal runs ((7,6,5),(3,2,1)), with lengths (3,3), so y is counted under a(24). The a(1) = 1 through a(14) = 14 partitions (A-E = 10-14): 1 2 3 4 5 6 7 8 9 A B C D E 21 31 32 42 43 53 54 64 65 75 76 86 41 51 52 62 63 73 74 84 85 95 321 61 71 72 82 83 93 94 A4 81 91 92 A2 A3 B3 432 631 A1 B1 B2 C2 531 4321 641 543 C1 D1 731 642 742 752 741 751 842 831 841 851 5421 931 941 A31 5432 6521
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,15}]
-
PARI
A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^(k*(k+1)*i^2/2)/prod(j=1,i, 1 - q^(j*k)))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 21 2025
Formula
G.f.: 1 + Sum_{i,k>0} q^(k*(k+1)*i^2/2)/Product_{j=1..i} (1 - q^(j*k)). - John Tyler Rascoe, Aug 21 2025