A384889 Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).
1, 2, 4, 8, 14, 23, 37, 59, 93, 146, 230, 365, 584, 940, 1517, 2450, 3959, 6404, 10373, 16822, 27298, 44297, 71843, 116429, 188550, 305200, 493930, 799422, 1294108, 2095291, 3392736, 5493168, 8892148, 14390372, 23282110, 37660759, 60914308, 98528312, 159386110
Offset: 0
Keywords
Examples
The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12). The a(0) = 1 through a(4) = 14 subsets: {} {} {} {} {} {1} {1} {1} {1} {2} {2} {2} {1,2} {3} {3} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,2,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {2,3,4} {1,2,3,4}
Links
- Christian Sievers, Table of n, a(n) for n = 0..1000
Crossrefs
For partitions instead of subsets we have A384888.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
-
PARI
lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ Christian Sievers, Jun 20 2025
Formula
G.f.: ( Sum_{i>=1} (1/(1-x^(2*i-1)/(1-x)^(i-1))-1) + 1-x ) / (1-x)^2. - Christian Sievers, Jun 21 2025
Extensions
a(21) and beyond from Christian Sievers, Jun 20 2025