cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384909 Decimal expansion of the volume of an elongated pentagonal orthobicupola with unit edge.

Original entry on oeis.org

1, 2, 3, 4, 2, 2, 9, 9, 4, 7, 9, 6, 0, 4, 5, 1, 9, 7, 6, 8, 3, 0, 4, 6, 2, 4, 6, 6, 5, 0, 6, 7, 3, 0, 9, 5, 4, 0, 6, 0, 4, 2, 4, 6, 5, 0, 4, 9, 9, 3, 1, 8, 2, 0, 3, 3, 2, 9, 2, 4, 2, 0, 2, 8, 6, 4, 8, 4, 5, 1, 9, 4, 5, 5, 4, 2, 1, 4, 6, 7, 1, 6, 2, 0, 2, 2, 3, 7, 0, 1
Offset: 2

Views

Author

Paolo Xausa, Jun 12 2025

Keywords

Comments

The elongated pentagonal orthobicupola is Johnson solid J_38.
Also the volume of an elongated pentagonal gyrobicupola (Johnson solid J_39) with unit edge.

Examples

			12.342299479604519768304624665067309540604246504993...
		

Crossrefs

Cf. A384625 (surface area - 10).

Programs

  • Mathematica
    First[RealDigits[(10 + 8*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J38", "Volume"], 10, 100]]

Formula

Equals (10 + 8*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (10 + 8*A002163 + 15*sqrt(5 + A010476))/6.
Equals the largest root of 1296*x^4 - 8640*x^3 - 82440*x^2 - 109200*x + 76525.