A384926 Number of partitions of n with six designated summands.
1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21
Keywords
Examples
21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1. 22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 21..4000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7) end: a:= n-> coeff(b(n$2), x, 6): seq(a(n), n=21..57); # Alois P. Heinz, Jul 23 2025
-
Mathematica
nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)
Formula
A000716(n) >= a(21+n) with equality only for n <= 6.
Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / (12! * 13!). - Vaclav Kotesovec, Aug 01 2025
Extensions
More terms from Alois P. Heinz, Jul 23 2025