cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384926 Number of partitions of n with six designated summands.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21

Views

Author

Omar E. Pol, Jul 23 2025

Keywords

Examples

			21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1.
22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
		

Crossrefs

Column k=6 of A385001.
Columns of A385001 converge to A000716.
Other columns k of A385001 are A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5).

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7)
        end:
    a:= n-> coeff(b(n$2), x, 6):
    seq(a(n), n=21..57);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

A000716(n) >= a(21+n) with equality only for n <= 6.
Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / (12! * 13!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Alois P. Heinz, Jul 23 2025