cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384939 Maximum element in the continued fraction for (1/n) * Sum_{k>=0} 1/3^(2^k).

Original entry on oeis.org

5, 11, 17, 24, 29, 35, 42, 48, 53, 60, 66, 72, 77, 84, 90, 96, 102, 108, 114, 121, 126, 132, 139, 145, 151, 156, 163, 169, 175, 181, 187, 193, 200, 205, 211, 218, 224, 229, 235, 242, 248, 253, 260, 266, 272, 279, 284, 290, 297, 303, 308, 314, 321, 327, 332, 339, 345, 351, 357, 363, 369, 375, 381, 387, 393, 400, 406, 411, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 479, 484, 326, 497, 503, 508, 515, 521, 527, 532, 539, 545, 551, 558, 563, 569, 576, 582, 587, 594, 600, 606
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    m = 10; terms = 100; t1 = ConstantArray[0, 2*terms]; t2 = ConstantArray[1, 2*terms]; Until[t1 == t2, m++; PrintTemporary["m=",m]; s = Sum[1/3^(2^k), {k, 0, m}]; t1 = t2; t2 = Table[Max[ContinuedFraction[s/n]], {n, 1, 2*terms}]]; Take[t2, terms]