A384948 Primes p == 3 (mod 4) such that 5 is a primitive root of integers modulo p, but 2+-i are not primitive roots of Gaussian integers modulo p.
83, 307, 347, 503, 587, 863, 947, 1103, 1223, 1523, 1567, 1667, 1787, 1907, 2063, 2087, 2267, 2663, 2683, 2687, 2903, 2963, 3167, 3343, 3347, 3623, 3803, 3863, 4283, 4463, 4523, 4643, 4967, 5147, 5303, 5387, 5507, 5563, 5807, 5843, 6047, 6203, 6607, 6863, 6983, 7187, 7247, 7523, 7583
Offset: 1
Examples
5 is a primitive root modulo 83, but the multiplicative order of 2+-i modulo 83 in Gaussian integers is not 83^2 - 1 = 6888; it is 2296 = 6888/3. In other words, 2+-i are not generators of (Z[i]/83Z[i])*.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isprim(p) = my(f = factor(p^2-1)[,1]~); for(i=1, #f, if(Mod([2, -1; 1, 2], p)^((p^2-1)/f[i]) == 1, return(0))); return(1) \\ for a prime p == 3 (mod 4), determines if 2+-i are primitive roots modulo p isA384948(p) = isprime(p) && (p%4==3) && znorder(Mod(5,p))==p-1 && !isprim(p)
Comments