A385168 Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) > 1. Here ord(a,m) is the multiplicative order of a modulo m.
11, 79, 83, 131, 139, 191, 199, 211, 239, 251, 307, 331, 347, 359, 419, 439, 479, 491, 503, 571, 587, 599, 659, 691, 719, 811, 839, 863, 919, 947, 971, 1019, 1039, 1051, 1091, 1103, 1171, 1223, 1231, 1279, 1291, 1319, 1399, 1439, 1451, 1499, 1523, 1531, 1559, 1567, 1571, 1619, 1667, 1759
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
PARI
quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p) isA385168(p) = isprime(p) && p%4==3 && quot(p) > 1
Formula
139 is a term since the multiplicative order of 2+-i modulo 139 is 1932, and (140*ord(5,139))/1932 = 5 > 1.
5683 is a term since the multiplicative order of 2+-i modulo 5683 is 1537928, and (5684*ord(5,5683))/1537928 = 7 > 1.
Comments