A385167 Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is even. Here ord(a,m) is the multiplicative order of a modulo m.
11, 79, 131, 199, 211, 239, 251, 331, 359, 439, 479, 491, 571, 599, 691, 719, 811, 839, 919, 971, 1039, 1051, 1091, 1171, 1279, 1291, 1319, 1399, 1439, 1451, 1531, 1559, 1571, 1759, 1811, 1879, 1931, 1999, 2011, 2039, 2131, 2239, 2251, 2371, 2399, 2411, 2531, 2719, 2731, 2851, 2879, 2971, 2999
Offset: 1
Examples
359 is a term since the multiplicative order of 2+-i modulo 359 is 6444, and (360*ord(5,359))/6444 = 10 is even.
Links
- Jianing Song, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
PARI
quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p) isA385167(p) = isprime(p) && p%4==3 && quot(p)%2==0
Comments