cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A385167 Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is even. Here ord(a,m) is the multiplicative order of a modulo m.

Original entry on oeis.org

11, 79, 131, 199, 211, 239, 251, 331, 359, 439, 479, 491, 571, 599, 691, 719, 811, 839, 919, 971, 1039, 1051, 1091, 1171, 1279, 1291, 1319, 1399, 1439, 1451, 1531, 1559, 1571, 1759, 1811, 1879, 1931, 1999, 2011, 2039, 2131, 2239, 2251, 2371, 2399, 2411, 2531, 2719, 2731, 2851, 2879, 2971, 2999
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i] for ord(a,m).
List of p = A002145(k) such that A385166(k) is even.
Since in this case d(p) divides (p^2-1)/2, 5 must be a quadratic residue modulo p (see A385165).

Examples

			359 is a term since the multiplicative order of 2+-i modulo 359 is 6444, and (360*ord(5,359))/6444 = 10 is even.
		

Crossrefs

Cf. A002145, A385165 (list of ord(2+-i,p)), A385166 (list of (p+1) * ord(5,p) / ord(2+-i,p)).
Subsequence of the intersection of A122869 and A385168. Contains A385180 as a subsequence.

Programs

  • PARI
    quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p)
    isA385167(p) = isprime(p) && p%4==3 && quot(p)%2==0

A385180 Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is divisible by 4. Here ord(a,m) is the multiplicative order of a modulo m.

Original entry on oeis.org

331, 571, 599, 691, 839, 919, 971, 1039, 1051, 1171, 1279, 1291, 1319, 1399, 1439, 1451, 1571, 1759, 1879, 2131, 2411, 2879, 2971, 3079, 3251, 3331, 3491, 3571, 3691, 3851, 4051, 4079, 4091, 4211, 4519, 4639, 4651, 4679, 4691, 4759, 4919, 4931, 5051, 5119, 5171, 5279, 5479, 5519, 5531
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i] for ord(a,m).
List of p = A002145(k) such that A385166(k) is divisible by 4.
Since in this case d(p) divides (p^2-1)/2, 5 must be a quadratic residue modulo p (see A385165).
By definition, a term that is in neither A385169 nor A385179 must be congruent to 31 or 79 modulo 80. The smallest such term is p = 1759 (ord(2+-i,p) = ((p+1)/4) * ord(5,p) = 128920); even if 1039 == 79 (mod 80), we have ord(2+-i,p) = ((p+1)/8) * ord(5,p) = 22490 == 2 (mod 4), which means that 1039 is in A385179.

Examples

			571 is a term since the multiplicative order of 2+-i modulo 571 is 40755, and (572*ord(5,571))/40755 = 4 is divisible by 4.
		

Crossrefs

Cf. A002145, A385165 (list of ord(2+-i,p)), A385166 (list of (p+1) * ord(5,p) / ord(2+-i,p)).
Subsequence of A385167, which is itself a subsequence of intersection of A122869 and A385168.

Programs

  • PARI
    quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p)
    isA385180(p) = isprime(p) && p%4==3 && quot(p)%4==0

A385166 Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) = (p+1) * ord(5,p) / ord(2+-i,p) = (p+1) * ord(5,p) / A385165(n). Here ord(a,m) is the multiplicative order of a modulo m.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 11, 1, 4, 3, 10, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 6, 1, 3, 1, 1, 1, 4, 3, 24, 1, 1, 1, 1, 1, 3, 1, 4, 2, 1, 1, 1, 1, 1, 2, 1, 1, 8, 1, 27, 1, 1, 1, 1, 20, 3, 1, 4, 1, 1
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i] for ord(a,m).

Examples

			The multiplicative order of 2+-i modulo A002145(3) = 11 is A385165(3) = 30, so a(3) = (12*ord(5,11))/30 = 2.
The multiplicative order of 2+-i modulo A002145(13) = 83 is A385165(13) = 2296, so a(13) = (84*ord(5,83))/2296 = 3.
		

Crossrefs

Cf. A002145, A385165. Primes corresponding to special terms: A385168 (>1), A385167 (even), A385180 (divisible by 4).
Cf. A211450.

Programs

  • PARI
    quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p)
    forprime(p=3, 1e3, if(p%4==3, print1(quot(p), ", ")))

A385169 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is odd.

Original entry on oeis.org

331, 571, 599, 691, 839, 971, 1051, 1171, 1291, 1451, 1571, 1879, 2131, 2411, 2971, 3251, 3331, 3491, 3571, 3691, 3851, 4051, 4091, 4211, 4651, 4679, 4691, 4919, 4931, 5051, 5171, 5479, 5531, 5651, 5839, 5851, 5879, 6011, 6599, 6679, 6691, 7079, 7211, 7331, 7691, 8011, 8039, 8171, 8731, 8839, 9011, 9371, 9811
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
Let ord(a,m) be the multiplicative order of a modulo m. (Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i]). For a prime p == 3 (mod 4), we have that ord(2+-i,p) is divisible by ord(5,p), and that ord(2+-i,p) divides (p+1) * ord(5,p). What's more, ord(2+-i,p) divides (p^2-1)/2 if and only if 5 is a quadratic residue of integers modulo p. (See A385165).
As a result, if ord(2+-i,p) is not divisible by 8, then ord(5,p) is odd:
- Of course this is true if ord(2+-i,p) is odd.
- If ord(2+-i,p) == 2 (mod 4) and ord(5,p) is even, then ord(2+-i,p)/ord(5,p) is odd, and so ord(2+-i,p) divides ((p+1)/4) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) is odd, a contradiction.
- If ord(2+-i,p) == 4 (mod 8) and ord(5,p) is even (we have ord(5,p) == 2 (mod 4) since p == 3 (mod 4)), then ord(2+-i,p)/ord(5,p) == 2 (mod 4), and so ord(2+-i,p) divides ((p+1)/2) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) == 2 (mod 4), a contradiction.
From the above paragraph, this sequence is also primes p == 3 (mod 4) such that ord(2+-i,p)/ord(5,p) is odd.

Examples

			8731 is a term since (2+-i)^635253 == 1 (mod 8731), and 635253 is odd.
8839 is a term since (2+-i)^57447 == 1 (mod 8839), and 57447 is odd.
9011 is a term since (2+-i)^2029953 == 1 (mod 9011), and 2029953 is odd.
		

Crossrefs

Cf. A385165, A385179, A385192, A385217 (the actual multiplicative orders).
A385188 < this sequence < A385180 < A385167 < intersection of A122869 and A385168, where Ax < Ay means that Ax is a subsequence of Ay.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    isA385169(p) = isprime(p) && p%4==3 && ord(p)%2

A385179 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is congruent to 2 modulo 4.

Original entry on oeis.org

11, 131, 211, 251, 491, 811, 919, 1039, 1091, 1319, 1399, 1531, 1811, 1931, 2011, 2251, 2371, 2531, 2731, 2851, 3011, 3079, 3371, 3931, 4079, 4451, 4519, 4759, 5011, 5639, 6091, 6131, 6211, 6359, 6451, 6491, 6571, 6971, 7411, 7451, 7559, 7639, 8291, 8719, 8971, 9091, 9491, 9719, 9839, 9851, 9931
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
Let ord(a,m) be the multiplicative order of a modulo m. (Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i]). For a prime p == 3 (mod 4), we have that ord(2+-i,p) is divisible by ord(5,p), and that ord(2+-i,p) divides (p+1) * ord(5,p). What's more, ord(2+-i,p) divides (p^2-1)/2 if and only if 5 is a quadratic residue of integers modulo p. (See A385165).
As a result, if ord(2+-i,p) is not divisible by 8, then ord(5,p) is odd:
- Of course this is true if ord(2+-i,p) is odd.
- If ord(2+-i,p) == 2 (mod 4) and ord(5,p) is even, then ord(2+-i,p)/ord(5,p) is odd, and so ord(2+-i,p) divides ((p+1)/4) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) is odd, a contradiction.
- If ord(2+-i,p) == 4 (mod 8) and ord(5,p) is even (we have ord(5,p) == 2 (mod 4) since p == 3 (mod 4)), then ord(2+-i,p)/ord(5,p) == 2 (mod 4), and so ord(2+-i,p) divides ((p+1)/2) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) == 2 (mod 4), a contradiction.
From the above paragraph, this sequence is also primes p == 3 (mod 4) such that ord(2+-i,p)/ord(5,p) == 2 (mod 4).

Examples

			919 is a term since (2+-i)^21114 == 1 (mod 919), (2+-i)^(21114/2) !== 1 (mod 919), and we have 21114 == 2 (mod 4).
		

Crossrefs

Cf. A385165, A385169, A385188, A385218 (the actual multiplicative orders).
Subsequence of A385167, which itself lies in the intersection of A122869 and A385168.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    isA385179(p) = isprime(p) && p%4==3 && ord(p)%4==2

A385188 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is not divisible by 2 or 3.

Original entry on oeis.org

599, 691, 1291, 1451, 2411, 3851, 4919, 5051, 5479, 5531, 5879, 6599, 7079, 7691, 8011, 8039, 11491, 13291, 14011, 15091, 15971, 16651, 17359, 18731, 19211, 19531, 20731, 22651, 23971, 24611, 25639, 25679, 26251, 32051, 32359, 32531, 32771, 32971, 35879, 37039, 37571, 38011, 38371
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
5 is a quadratic residue of integers modulo p for p being a term of this sequence. (See A385165).

Examples

			5479 is a term since (2+-i)^125081 == 1 (mod 5479), and 125081 is divisible by neither 2 nor 3.
		

Crossrefs

Cf. A385165, A385179, A385219 (the actual multiplicative orders).
this sequence < A385169 < A385180 < A385167 < intersection of A122869 and A385168, where Ax < Ay means that Ax is a subsequence of Ay.
Also a subsequence of A385191.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    isA385188(p) = isprime(p) && p%4==3 && ord(p)%2 && ord(p)%3

A384948 Primes p == 3 (mod 4) such that 5 is a primitive root of integers modulo p, but 2+-i are not primitive roots of Gaussian integers modulo p.

Original entry on oeis.org

83, 307, 347, 503, 587, 863, 947, 1103, 1223, 1523, 1567, 1667, 1787, 1907, 2063, 2087, 2267, 2663, 2683, 2687, 2903, 2963, 3167, 3343, 3347, 3623, 3803, 3863, 4283, 4463, 4523, 4643, 4967, 5147, 5303, 5387, 5507, 5563, 5807, 5843, 6047, 6203, 6607, 6863, 6983, 7187, 7247, 7523, 7583
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

For p = A002145(k), A385165(k) divides (p+1) * ord(5,p), since we have (2+-i)^(p+1) == 5 (mod p). Hence if 2+-i are primitive roots of Gaussian integers modulo p, then 5 is a primitive root of integers modulo p. This sequence lists p such that the converse does not hold.

Examples

			5 is a primitive root modulo 83, but the multiplicative order of 2+-i modulo 83 in Gaussian integers is not 83^2 - 1 = 6888; it is 2296 = 6888/3. In other words, 2+-i are not generators of (Z[i]/83Z[i])*.
		

Crossrefs

By definition, subsequence of A019335, A122870, and A385168.

Programs

  • PARI
    isprim(p) = my(f = factor(p^2-1)[,1]~); for(i=1, #f, if(Mod([2, -1; 1, 2], p)^((p^2-1)/f[i]) == 1, return(0))); return(1) \\ for a prime p == 3 (mod 4), determines if 2+-i are primitive roots modulo p
    isA384948(p) = isprime(p) && (p%4==3) && znorder(Mod(5,p))==p-1 && !isprim(p)
Showing 1-7 of 7 results.