cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384952 Decimal expansion of the volume of an elongated pentagonal orthobirotunda with unit edge.

Original entry on oeis.org

2, 1, 5, 2, 9, 7, 3, 4, 7, 7, 9, 1, 8, 7, 5, 3, 7, 6, 4, 6, 2, 5, 1, 7, 1, 8, 5, 0, 1, 4, 9, 7, 5, 5, 7, 2, 2, 7, 0, 9, 8, 5, 0, 7, 3, 7, 7, 7, 4, 3, 8, 0, 3, 9, 5, 3, 0, 3, 2, 0, 9, 9, 4, 8, 7, 9, 3, 3, 6, 3, 4, 1, 7, 7, 2, 1, 1, 5, 0, 7, 8, 4, 4, 4, 7, 7, 3, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jun 20 2025

Keywords

Comments

The elongated pentagonal orthobirotunda is Johnson solid J_42.
Also the volume of an elongated pentagonal gyrobirotunda (Johnson solid J_43) with unit edge.

Examples

			21.52973477918753764625171850149755722709850737774...
		

Crossrefs

Cf. A179451 (surface area - 10), A344149 (surface area + 20).

Programs

  • Mathematica
    First[RealDigits[(45 + 17*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J42", "Volume"], 10, 100]]

Formula

Equals (45 + 17*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (45 + 17*A002163 + 15*sqrt(5 + A010476))/6.
Equals the largest root of 1296*x^4 - 38880*x^3 + 252360*x^2 - 329400*x - 332975.