cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384960 a(n) = smallest sphenic number k such that A010846(k) = n.

Original entry on oeis.org

1001, 105, 231, 30, 42, 70, 110, 66, 78, 170, 102, 114, 138, 370, 174, 826, 222, 246, 258, 318, 354, 402, 438, 498, 534, 582, 654, 762, 786, 894, 978, 1038, 1158, 1338, 1506, 1542, 1758, 1986, 2082, 2202, 2334, 2598, 2922, 3126, 3462, 3918, 4098, 4398, 4614, 5262
Offset: 15

Views

Author

Michael De Vlieger, Jul 06 2025

Keywords

Comments

a(1) = A384000(3) = 1001; A010846(1001) = A024718(3) = 15; 1001 is the smallest number k with 3 distinct prime factors that has the smallest possible number of terms in row k of A162306, i.e., m <= k such that rad(m) | k.
For n > 30, 6 | a(n).

Examples

			Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p.
                                Prime power factor
                                    1111223344455
 n  m=a(n) pi(facs(m))    S     23571379391713739
-------------------------------------------------
15   1001   4.5.6       4.3.3   ...111
16    105   2.3.4       5.3.3   .111
17    231   2.4.5       5.3.3   .1.11
18     30   1.2.3       5.4.3   111
19     42   1.2.4       6.4.2   11.1
20     70   1.3.4       7.3.3   1.11
21    110   1.3.5       7.3.2   1.1.1
22     66   1.2.5       7.4.2   11..1
23     78   1.2.6       7.4.2   11...1
24    170   1.3.7       8.4.2   1.1...1
25    102   1.2.7       7.5.2   11....1
26    114   1.2.8       7.5.2   11.....1
27    138   1.2.9       8.5.2   11......1
28    370   1.3.12      9.4.2   1.1........1
29    174   1.2.10      8.5.2   11.......1
30    826   1.4.17     10.4.2   1..1............1
31    222   1.2.12      8.5.2   11.........1
32    246   1.2.13      8.6.2   11..........1
33    258   1.2.14      9.6.2   11...........1
34    318   1.2.16      9.6.2   11.............1
		

Crossrefs

Programs

  • Mathematica
    (* See Mathematica code link for function definitions for kappaomega and theta *)
    s =  kappaomega[3, 6000]; t = Map[theta, s];
    Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]