A384960 a(n) = smallest sphenic number k such that A010846(k) = n.
1001, 105, 231, 30, 42, 70, 110, 66, 78, 170, 102, 114, 138, 370, 174, 826, 222, 246, 258, 318, 354, 402, 438, 498, 534, 582, 654, 762, 786, 894, 978, 1038, 1158, 1338, 1506, 1542, 1758, 1986, 2082, 2202, 2334, 2598, 2922, 3126, 3462, 3918, 4098, 4398, 4614, 5262
Offset: 15
Keywords
Examples
Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p. Prime power factor 1111223344455 n m=a(n) pi(facs(m)) S 23571379391713739 ------------------------------------------------- 15 1001 4.5.6 4.3.3 ...111 16 105 2.3.4 5.3.3 .111 17 231 2.4.5 5.3.3 .1.11 18 30 1.2.3 5.4.3 111 19 42 1.2.4 6.4.2 11.1 20 70 1.3.4 7.3.3 1.11 21 110 1.3.5 7.3.2 1.1.1 22 66 1.2.5 7.4.2 11..1 23 78 1.2.6 7.4.2 11...1 24 170 1.3.7 8.4.2 1.1...1 25 102 1.2.7 7.5.2 11....1 26 114 1.2.8 7.5.2 11.....1 27 138 1.2.9 8.5.2 11......1 28 370 1.3.12 9.4.2 1.1........1 29 174 1.2.10 8.5.2 11.......1 30 826 1.4.17 10.4.2 1..1............1 31 222 1.2.12 8.5.2 11.........1 32 246 1.2.13 8.6.2 11..........1 33 258 1.2.14 9.6.2 11...........1 34 318 1.2.16 9.6.2 11.............1
Links
- Michael De Vlieger, Table of n, a(n) for n = 15..300
- Michael De Vlieger, Plot of terms k = p^a*q^b*r^c, primes p < q < r, in row a(n) of A162306, n = 15..50, at (x,y,z) = (a,b,c). For a(n) there are n blocks in each diagram.
- Michael De Vlieger, Mathematica code.
Programs
-
Mathematica
(* See Mathematica code link for function definitions for kappaomega and theta *) s = kappaomega[3, 6000]; t = Map[theta, s]; Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]
Comments