cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385019 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385015.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 4, 0, 1, 4, 15, 16, -13, 0, 1, 5, 22, 37, -2, -81, 0, 1, 6, 30, 68, 45, -156, -389, 0, 1, 7, 39, 110, 141, -165, -1028, -198, 0, 1, 8, 49, 164, 300, -32, -1796, -1926, 7455, 0, 1, 9, 60, 231, 537, 336, -2460, -5499, 10923, 44515, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2025

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,     1,     1,     1, ...
  0,    1,     2,     3,     4,     5,     6, ...
  0,    4,     9,    15,    22,    30,    39, ...
  0,    4,    16,    37,    68,   110,   164, ...
  0,  -13,    -2,    45,   141,   300,   537, ...
  0,  -81,  -156,  -165,   -32,   336,  1050, ...
  0, -389, -1028, -1796, -2460, -2655, -1863, ...
		

Crossrefs

Columns k=0..1 give A000007, A385015.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+j+k-1, j-1)*b(n-j, 3*j)/j));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+j+k-1,j-1) * b(n-j,3*j)/j. Then A(n,k) = b(n,-k).

A385014 G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^2.

Original entry on oeis.org

1, 1, 3, 4, 3, -15, -118, -336, -595, 1467, 20391, 96205, 353686, 574786, -2717256, -30598208, -197828371, -841728699, -2599029153, -1309899955, 56975269295, 522707807733, 3425068059553, 16747743739845, 63468629516172, 111911654532374, -907903172853988, -12555837715110897
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+j+k-1, j-1)*a(n-j, 2*j)/j));

Formula

See A385018.

A385016 G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^4.

Original entry on oeis.org

1, 1, 5, 3, -51, -190, -401, 3672, 51925, 151539, -482538, -9063614, -79813421, -183787112, 1737820084, 22402935304, 179028179329, 459719628273, -4012720499801, -61168331089037, -556435825634630, -2299434933774430, 2674772917888194, 157684497102084776
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2025

Keywords

Crossrefs

Column k=1 of A385020.
Cf. A384941.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+j+k-1, j-1)*a(n-j, 4*j)/j));

Formula

See A385020.
Showing 1-3 of 3 results.