cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385149 Number of chiral pairs of asymmetric polyominoes with n cells of the regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 43, 225, 1162, 6081, 32315, 174856, 961764, 5369567, 30373643, 173811011, 1004802212, 5861460314, 34468644574, 204161097084, 1217143092549, 7299002607829, 44005589820244, 266608357403244, 1622502342468552, 9914884364399700
Offset: 0

Views

Author

Robert A. Russell, Jun 19 2025

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __
|__|__|__|  |__|__|__|  a(4) = 1.
      |__|  |__|
		

Crossrefs

Cf. A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A001764 (rooted).

Programs

  • Mathematica
    Table[If[n<4,0,(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1) + Switch[Mod[n,4], 0,4Binomial[3n/4,n/4]/(n/2+1)-6Binomial[3n/2,n/2]/(n+1), 1,(4Binomial[(3n-3)/4,(n-1)/4]-10Binomial[(3n-1)/2,(n-1)/2])/(n+1)+(8Binomial[(3n+1)/4,(n-1)/4]+16Binomial[(3n-3)/4,(n-5)/4])/(n+3), 2,16Binomial[(3n-2)/4,(n-2)/4]/(n+2)-6Binomial[3n/2,n/2]/(n+1), 3,24Binomial[(3n-1)/4,(n-3)/4]/(n+3)-10Binomial[(3n-1)/2,(n-1)/2]/(n+1)])/8],{n,0,30}]

Formula

G.f.: (3*G(z) - G(z)^2 - 6*G(z^2) - 5z*G(z^2)^2 + 4*G(z^4) + 2z*G(z^4) + 2z*G(z^4)^2 + 4z^2*G(z^4)^2 + 4z^3*G(z^4)^3 + 2z^5*G(z^4)^4) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764.