A385163 Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) is the multiplicative order of 1+-i modulo p in Gaussian integers.
8, 24, 40, 72, 88, 40, 56, 184, 232, 264, 280, 312, 328, 408, 424, 56, 520, 552, 120, 648, 664, 712, 760, 792, 840, 296, 904, 952, 200, 1048, 1080, 376, 408, 1240, 120, 1384, 1432, 1464, 1512, 1528, 1672, 344, 584, 1768, 1848, 1864, 1912, 1944, 1960, 664, 2008, 2088, 2184, 2248, 456
Offset: 1
Examples
For A002145(4) = 19: Since (1+i)^(4k) = (-4)^k, we have (1+i)^72 == 1 (mod 19), and 72 is the smallest such exponent. Hence a(4) = 72.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
forprime(p=3, 1e3, if(p%4==3, print1(4*znorder(Mod(-4,p)), ", ")))
Comments