A385165 Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) is the multiplicative order of 2+-i modulo p in Gaussian integers.
8, 48, 30, 180, 528, 96, 1848, 2208, 1740, 1496, 360, 1560, 2296, 10608, 11448, 5376, 4290, 1932, 11400, 8856, 27888, 16020, 1216, 3300, 3710, 49728, 51528, 14280, 3150, 69168, 7344, 80088, 8568, 48360, 13695, 40136, 6444, 44896, 7980, 146688, 29260, 92880, 48180
Offset: 1
Examples
The multiplicative order of 2+-i modulo A002145(3) = 11 is a(3) = 30, since (2+-i)^30 == 1 (mod 11), and 30 is the smallest such exponent.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
ord(p) = my(d = divisors((p+1)*znorder(Mod(5,p)))); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i,p) forprime(p=3, 1e3, if(p%4==3, print1(ord(p), ", ")))
Comments