A385190 Primes p == 3 (mod 4), p > 3 such that 1+-i are 24th powers modulo p.
31, 127, 191, 223, 383, 479, 863, 1151, 1439, 1471, 1823, 2111, 2143, 2207, 2399, 2591, 2687, 2879, 3167, 3359, 3391, 4127, 4703, 4799, 5087, 5279, 5471, 5503, 6047, 6079, 6143, 6271, 6719, 6911, 7103, 7487, 7583, 8191, 8287, 8447, 8543, 8831, 8863, 9311, 9439, 9631, 9791, 9887
Offset: 1
Examples
31 is a term since (1+-i)^((31^2-1)/24) = (-4)^((31^2-1)/96) = 1048576 == 1 (mod 31). Indeed, the solutions to x^24 == 1+i (mod 31) are x == {17-6*i, 16+6*i, 1+8*i, -1+13*i, 9-5*i, 3+5*i} X {+-1, +-i} (mod 31).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA385190(p) = isprime(p) && p%16==15 && Mod(-4,p)^((p^2-1)/96) == 1
Comments