cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385205 G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^4 )^(1/5).

Original entry on oeis.org

1, 5, 50, 500, 4375, 27500, 0, -3562500, -70078125, -876562500, -6926562500, 0, 1189169921875, 25690820312500, 346441406250000, 2911880859375000, 0, -550017993164062500, -12339622131347656250, -171953389892578125000, -1487552714691162109375, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(4*n/5+1/5, n)/(4*n+1);

Formula

a(n) = 25^n * binomial(4*n/5+1/5,n)/(4*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^3).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(4/5)) )^(1/4).
a(5*n+1) = 0 for n > 0.
G.f.: 1/B(x), where B(x) is the g.f. of A299958.

A385203 G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^2 )^(1/5).

Original entry on oeis.org

1, 5, 0, -125, 625, 5625, -87500, 0, 9140625, -60156250, -653125000, 11654296875, 0, -1470068359375, 10353515625000, 118916992187500, -2225148925781250, 0, 302784667968750000, -2199076690673828125, -25952287445068359375, 497460246276855468750, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(2*n/5+1/5, n)/(2*n+1);

Formula

a(n) = 25^n * binomial(2*n/5+1/5,n)/(2*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x/A(x)).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(2/5)) )^(1/2).
a(5*n+2) = 0 for n >= 0.

A380465 G.f. A(x) satisfies A(x) = 1/( 1 - 25*x*A(x)^2 )^(1/5).

Original entry on oeis.org

1, 5, 125, 4250, 166250, 7052500, 315459375, 14648437500, 699404062500, 34120414453125, 1693355782421875, 85222795492187500, 4339218139648437500, 223115431527734375000, 11568972340119140625000, 604249120575386718750000, 31761084429202554931640625, 1678825356066226959228515625
Offset: 0

Views

Author

Seiichi Manyama, Jun 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(7*n/5+1/5, n)/(7*n+1);

Formula

G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^7 )^(1/5).
a(n) = 25^n * binomial(7*n/5+1/5,n)/(7*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(7/5)) )^(1/7).

A380466 G.f. A(x) satisfies A(x) = 1/( 1 - 25*x*A(x)^3 )^(1/5).

Original entry on oeis.org

1, 5, 150, 6250, 301875, 15868125, 881237500, 50865750000, 3021240234375, 183454158593750, 11336659803906250, 710625236343750000, 45075347315400390625, 2887845039367675781250, 186601230428607421875000, 12146710229056792968750000, 795792421294273872070312500
Offset: 0

Views

Author

Seiichi Manyama, Jun 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(8*n/5+1/5, n)/(8*n+1);

Formula

G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^8 )^(1/5).
a(n) = 25^n * binomial(8*n/5+1/5,n)/(8*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^11).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(8/5)) )^(1/8).

A380471 G.f. A(x) satisfies A(x) = 1/( 1 - 25*x*A(x)^4 )^(1/5).

Original entry on oeis.org

1, 5, 175, 8625, 495000, 30980625, 2050781250, 141187921875, 10006590468750, 725240531640625, 53503504196484375, 4004478454589843750, 303320955472031250000, 23207794539155419921875, 1791025435519151367187500, 139250846557940616210937500, 10897102765738964080810546875
Offset: 0

Views

Author

Seiichi Manyama, Jun 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(9*n/5+1/5, n)/(9*n+1);

Formula

G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^9 )^(1/5).
a(n) = 25^n * binomial(9*n/5+1/5,n)/(9*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^13).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(9/5)) )^(1/9).
Showing 1-5 of 5 results.