A385217 Odd multiplicative orders of 2+-i modulo primes p == 3 (mod 4).
13695, 40755, 7475, 19895, 43995, 117855, 138075, 13185, 69445, 87725, 308505, 220665, 567645, 80735, 1103355, 1321125, 1386945, 507795, 1594005, 130995, 205975, 2051325, 2092035, 2216565, 2703975, 1368315, 2750685, 504095, 3039345, 212605, 3342405, 125081, 1274665, 3991725, 152205, 4279275
Offset: 1
Examples
a(49) = 635253 since it is the multiplicative order of 5 modulo A385169(49) = 8731, and it is odd. a(50) = 57447 since it is the multiplicative order of 5 modulo A385169(50) = 8839, and it is odd. a(51) = 2029953 since it is the multiplicative order of 5 modulo A385169(51) = 9011, and it is odd.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p) forprime(p=3, 1e4, if(p%4==3 && ord(p)%2, print1(ord(p), ", ")))
Comments