A385224 Primes p such that multiplicative order of -4 modulo p is odd.
5, 13, 29, 37, 41, 53, 61, 101, 109, 113, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 313, 317, 349, 373, 389, 397, 409, 421, 457, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 761, 773, 797, 809, 821, 829, 853, 857, 877, 941, 953, 997
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A002144 (primes congruent to 1 modulo 4).
Contains A007521 (primes congruent to 5 or modulo 8) as a proper subsequence.
Cf. A385230 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), this sequence (base -4), A385225 (base -5).
Cf. A133204.
Programs
-
Mathematica
Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-4, #]] &] (* Paolo Xausa, Jun 28 2025 *)
-
PARI
isA385224(p) = isprime(p) && (p!=2) && znorder(Mod(-4,p))%2
Comments