A385741 a(n) = Sum_{k=0..n} (binomial(n, k) mod 9).
1, 2, 4, 8, 16, 14, 28, 38, 31, 8, 16, 32, 28, 56, 49, 62, 52, 68, 28, 56, 76, 62, 79, 122, 91, 92, 112, 8, 16, 32, 28, 56, 76, 80, 124, 140, 28, 56, 103, 80, 142, 158, 145, 146, 184, 62, 124, 158, 100, 146, 184, 188, 232, 230, 28, 56, 76, 80, 151, 158, 136, 236
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 9), Acta Arithmetica, 78 (1997), 331-349.
Programs
-
Mathematica
a[n_]:=Sum[Mod[Binomial[n,k],9],{k,0,n}];Table[a[n],{n,0,61}] (* James C. McMahon, Jul 10 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k) % 9); \\ Michel Marcus, Jul 10 2025
-
Python
from gmpy2 import digits import re, sympy from sympy import S, I, sqrt, simplify, Rational def A385741(n): s = digits(n,3) n1 = s.count('1') n2 = s.count('2') n01 = s.count('10') n02 = s.count('20') n11 = len(re.findall('(?=11)',s)) n12 = s.count('21') n121 = len(re.findall('(?=121)',s)) n122 = s.count('221') n21 = s.count('12') n22 = len(re.findall('(?=22)',s)) x1 = (3*(3**n2*(12*n01+(n02<<4)+3*n11+(n12<<2))-(n01+n12<<2)+(n02<<4)+n11)<
>3 beta = S.Half*(I*sqrt(3)-1) def ind2(t): return (0,0,1,0,2,5,0,4,3)[t] def X(t): return beta**(ind2(t)-n11-n12+n121-n122)*(2-beta)**(n21-n121)*(3+beta)**(n2-n12-n21-n22+n121+n122) def Y(t): return beta**(n11-ind2(t))*(1-beta)**(n21-n121)*(2+beta)**(n2-n21-n22)*(1+2*beta)**n121 def f(t): return ((3**n2<
Comments