A385303 Decimal expansion of the real number whose continued fraction is Golomb's sequence (A001462).
1, 4, 1, 0, 7, 8, 4, 5, 3, 0, 7, 4, 9, 5, 3, 5, 5, 9, 1, 9, 3, 4, 7, 9, 9, 4, 2, 0, 2, 1, 0, 5, 7, 5, 1, 7, 8, 6, 1, 4, 6, 8, 6, 5, 1, 7, 3, 6, 6, 1, 0, 8, 6, 5, 1, 7, 2, 5, 2, 2, 6, 5, 6, 4, 7, 9, 6, 3, 4, 2, 1, 3, 2, 2, 0, 5, 1, 2, 6, 7, 2, 3, 6, 5, 3, 2, 9, 6, 3, 3, 5, 6, 8, 9, 8, 7, 3, 8, 1, 7
Offset: 1
Examples
1.4107845307495355919347994202105751786146865173661...
Links
- Jason Bard, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[n - 1]]]; (* A001462 *) GenA385303[n_Integer] := Module[{cf1, cf2, d1, d2, i = n}, While[i < 2 n, cf1 = Table[a[k], {k, 1, i}]; cf2 = Table[a[k], {k, 1, i + 1}]; d1 = RealDigits[FromContinuedFraction[cf1], 10, n+1][[1]]; d2 = RealDigits[FromContinuedFraction[cf2], 10, n+1][[1]]; If[Take[d1,n] === Take[d2,n], Return[Take[d1,n]]]; i++;]]; GenA385303[100]