cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385311 Expansion of e.g.f. 1/(1 - 3 * x * cos(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 25, 232, 2805, 41920, 744933, 15340416, 359136073, 9419223040, 273558859409, 8714789788672, 302151400126589, 11326084055150592, 456421403198919325, 19677025400034590720, 903660903945306053137, 44042354270955276599296, 2270411632567521580120713
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*I^(n-k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} A007559(k) * i^(n-k) * A185951(n,k), where i is the imaginary unit and A185951(n,0) = 0^n.

A385305 Expansion of e.g.f. 1/(1 - 3 * sinh(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 29, 296, 3921, 63904, 1236509, 27700096, 705098241, 20100847104, 634406699389, 21959759364096, 827184049670161, 33684401687855104, 1474548883501060669, 69051807696652599296, 3444499079760040247681, 182339939994632235515904, 10209271857672376613472349
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} A007559(k) * A136630(n,k).
a(n) ~ sqrt(Pi) * 2^(1/3) * n^(n - 1/6) / (5^(1/6) * Gamma(1/3) * exp(n) * log((1 + sqrt(10))/3)^(n + 1/3)). - Vaclav Kotesovec, Jun 28 2025

A385307 Expansion of e.g.f. 1/(1 - 3 * sin(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 27, 264, 3361, 52704, 981707, 21176704, 519150241, 14255163904, 433384277787, 14451212550144, 524406240059521, 20572970822959104, 867641565719168267, 39145118179183427584, 1881294510800399083201, 95950279080398196834304, 5176039012712211526485147
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*I^(n-k)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} A007559(k) * i^(n-k) * A136630(n,k), where i is the imaginary unit.
a(n) ~ n! / (sqrt(2) * Gamma(1/3) * n^(2/3) * arcsin(1/3)^(n + 1/3)). - Vaclav Kotesovec, Jun 28 2025

A385308 Expansion of e.g.f. 1/(1 - 2 * x * cosh(x))^(1/2).

Original entry on oeis.org

1, 1, 3, 18, 141, 1400, 17055, 245392, 4070073, 76483584, 1606033755, 37267953536, 947051118981, 26156846230528, 780174007426359, 24992424003517440, 855795857724702705, 31193844533488074752, 1205893835653392258867, 49280187764171870470144, 2122704756621224015194365
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a001147(n) = prod(k=0, n-1, 2*k+1);
    a(n) = sum(k=0, n, a001147(k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} A001147(k) * A185951(n,k), where A185951(n,0) = 0^n.
a(n) ~ sqrt(2) * n^n / (sqrt(1 + r*sqrt(1 - 4*r^2)) * exp(n) * r^n), where r = 0.452787214835453627588998503316635625709288535855... is the root of the equation 2*r*cosh(r) = 1. - Vaclav Kotesovec, Jun 28 2025
Showing 1-4 of 4 results.