A385354 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^2, where 0 < x < y < z has exactly n integer solutions.
6, 188, 768, 1728, 2640, 21120, 42336, 13824, 71280, 5832, 80352, 74088, 425088, 421875, 1058400, 110592, 287496, 46656
Offset: 1
Examples
a(3)=768, because 768^2 = 54^3 + 59^3 + 61^3 = 40^3 + 62^3 + 66^3 = 24^3 + 40^3 + 80^3 and no integer less than 768 has 3 solutions.
Programs
-
Mathematica
s = Table[{k, Length@Select[PowersRepresentations[k^2, 3, 3], 0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 2000}]; a = Table[SelectFirst[s, #[[2]] == k &], {k, 4}][[All, 1]]
Extensions
a(18) from Chai Wah Wu, Jul 05 2025
Comments