cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385355 Triangular array read by rows: T(n,k) is the number of n X n matrices A over GF(2) such that the dimension of the null space of A^n is equal to k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 6, 6, 4, 168, 168, 112, 64, 20160, 20160, 13440, 7680, 4096, 9999360, 9999360, 6666240, 3809280, 2031616, 1048576, 20158709760, 20158709760, 13439139840, 7679508480, 4095737856, 2113929216, 1073741824, 163849992929280, 163849992929280, 109233328619520, 62419044925440, 33290157293568, 17182016667648, 8727373545472, 4398046511104
Offset: 0

Views

Author

Geoffrey Critzer, Jun 26 2025

Keywords

Comments

Conjecture: In the limit as n goes to infinity the probability that the nullity of such a random matrix is equal to k is Product_{i>=1} (1-1/2^i * 2^binomial(k,2)/A005329(k)).

Examples

			Triangle T(n,k) begins:
        1;
        1,       1;
        6,       6,       4;
      168,     168,     112,      64;
    20160,   20160,   13440,    7680,    4096;
  9999360, 9999360, 6666240, 3809280, 2031616, 1048576;
  ...
		

Crossrefs

Cf. A002884 (column k=0), A053763 (main diagonal), A002416 (row sums), A005329.

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; l= Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; \[Gamma][n_,q_] := Product[q^n - q^i, {i, 0, n - 1}];g[u_, v_, deg_, partitions_] := Total[Map[v^Total[#] u^(deg Total[#])/aut[deg, #] &, partitions]];Map[Select[#, # > 0 &] &,Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[Series[g[u, v, 1, l]*g[u, 1, 1, l] Product[g[u, 1, deg, l]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u,v}]] // Grid