A385378 The maximum possible number of distinct factors in the factorization of n into prime powers (A246655).
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2
Offset: 1
Examples
n | a(n) | factorization ------+------+-------------------------------- 2 | 1 | 2 6 | 2 | 2 * 3 24 | 3 | 2 * 3 * 2^2 120 | 4 | 2 * 3 * 2^2 * 5 840 | 5 | 2 * 3 * 2^2 * 5 * 7 6720 | 6 | 2 * 3 * 2^2 * 5 * 7 * 2^3 60480 | 7 | 2 * 3 * 2^2 * 5 * 7 * 2^3 * 3^2
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := Floor[(Sqrt[8*e + 1] - 1)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecsum(apply(x -> (sqrtint(8*x+1)-1)\2 , factor(n)[, 2]));
Formula
Additive with a(p^e) = A003056(e).
a(n) >= 1 for n >= 2, with equality if and only if n is a prime or a square of a prime (A000430).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=2} P(k*(k+1)/2) = 0.19285739770001405035..., and P is the prime zeta function.
Comments