cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385858 Numbers m in A385402 which are not prime.

Original entry on oeis.org

1, 35, 77, 95, 119, 125, 143, 187, 209, 221, 247, 259, 299, 319, 323, 377, 391, 403, 427, 437, 473, 493, 527, 551, 589, 629, 667, 697, 713, 731, 779, 799, 817, 851, 893, 899, 943, 989, 1007, 1073, 1139, 1147, 1189, 1199, 1219, 1247, 1271, 1313, 1333, 1343, 1357, 1363, 1387, 1397
Offset: 1

Views

Author

Robert G. Wilson v, Jul 10 2025

Keywords

Comments

Since all the primes are in A385402, this sequence is more concise.

Crossrefs

Proper subset of A385402.

Programs

  • Mathematica
    fQ[m_] := Sum[ GCD[m, Floor[m/k]], {k, m}] == Sum[ GCD[m, Ceiling[m/k]], {k, m}]; j = 1; lst = {}; While[j < 1400, If[ !PrimeQ@ j && fQ@ j, AppendTo[lst, j]]; j++]; lst
  • PARI
    isok(m) = if (!isprime(m), sum(k=1, m, gcd(m, floor(m/k))) == sum(k=1, m, gcd(m, ceil(m/k)))); \\ Michel Marcus, Jul 10 2025

A385398 Numbers m >= 1 such that Sum_{k = 1..m} gcd(m, floor(m / k)) > Sum_{k = 1..m} gcd(m, ceiling(m / k)).

Original entry on oeis.org

407, 539, 559, 637, 671, 793, 803, 949, 1037, 1067, 1159, 1241, 1273, 1331, 1469, 1649, 1679, 1727, 1817, 1843, 1853, 1919, 2057, 2159, 2197, 2231, 2299, 2321, 2507, 2651, 2669, 2743, 2783, 2813, 2873, 2983, 2987, 3007, 3077, 3133, 3161, 3179, 3193, 3211, 3379
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 27 2025

Keywords

Examples

			m = 407: Sum_{k = 1..407} gcd(407, floor(407 / k)) = 909, Sum_{k = 1..407} gcd(407, ceiling(407 / k)) = 899, 909 > 899, thus m = 407 is a term.
		

Crossrefs

Programs

  • PARI
    isok(m) = sum(k=1, m, gcd(m, floor(m/k))) > sum(k=1, m, gcd(m, ceil(m/k))); \\ Michel Marcus, Jun 28 2025
Showing 1-2 of 2 results.