A385409 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.
10, 42, 39, 153, 126, 276, 273, 312, 315, 476, 588, 336, 546, 777, 1053, 756, 1216, 1386, 1560, 1134, 1323, 1488, 1365, 1368, 1344, 1596, 2366, 2496, 2988, 1680, 2548, 1736, 2184, 3003, 3720, 2520, 3185, 3552, 2268, 3564, 4095, 3213, 4578, 4392, 5208, 4004, 4599, 5733
Offset: 1
Keywords
Examples
a(4)=153, because 153^2 = 5^3 + 15^3 + 21^3 + 22^3 = 2^3 + 7^3 + 15^3 + 27^3 = 6^3 + 8^3 + 9^3 + 28^3 = 1^3 + 5^3 + 11^3 + 28^3 and no integer less than 153 has 4 solutions.
Links
- Zhining Yang, Table of n, a(n) for n = 1..1341
Programs
-
Mathematica
s = Table[{k, Length@Select[PowersRepresentations[k^2, 4, 3], 0 < #[[1]] < #[[2]] < #[[3]] < #[[4]] &]}, {k, 500}]; a = Table[SelectFirst[s, #[[2]] == k &], {k, 10}][[All, 1]]
Comments