cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385420 Expansion of e.g.f. 1/(1 - arcsinh(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 19, 136, 1849, 28576, 383347, 6054016, 162756433, 4512553984, 94198960723, 2151597168640, 94600222614793, 3958651982848000, 103976698299157747, 2765446240371834880, 197818347558313860385, 11750108763413970288640, 335351034570439348695955
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Comments

a(28) = -1984619795429736510626124031150165852160.

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-asinh(3*x))^(1/3)))

Formula

E.g.f.: 1/(1 - log(3*x + sqrt(9*x^2 + 1)))^(1/3).
a(n) = Sum_{k=0..n} A007559(k) * (3*i)^(n-k) * A385343(n,k), where i is the imaginary unit.

A385421 Expansion of e.g.f. 1/(1 - arcsin(2*x))^(1/2).

Original entry on oeis.org

1, 1, 3, 19, 153, 1689, 21867, 343995, 6114993, 124933425, 2820098643, 70897706595, 1939085791305, 57898697121225, 1859540697970875, 64312039377723915, 2371651908598754145, 93246340110716523105, 3882169166979871734435, 171024539858087082582195
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(2*x))^(1/2)))

Formula

a(n) = Sum_{k=0..n} A001147(k) * 2^(n-k) * A385343(n,k).
a(n) ~ sqrt(sin(2)) * 2^n * n^n / (exp(n) * sin(1)^(n+1)). - Vaclav Kotesovec, Jun 28 2025
Showing 1-2 of 2 results.