cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385554 Period of {binomial(N,n) mod 10: N in Z}.

Original entry on oeis.org

1, 10, 20, 20, 40, 200, 200, 200, 400, 400, 400, 400, 400, 400, 400, 400, 800, 800, 800, 800, 800, 800, 800, 800, 800, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000, 8000
Offset: 0

Views

Author

Jianing Song, Jul 03 2025

Keywords

Examples

			For N == 0, 1, ..., 19 (mod 20), binomial(N,3) == {0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9} (mod 10).
For N == 0, 1, ..., 39 (mod 40), binomial(N,4) == {0, 0, 0, 0, 1, 5, 5, 5, 0, 6, 0, 0, 5, 5, 1, 5, 0, 0, 0, 6, 5, 5, 5, 5, 6, 0, 0, 0, 5, 1, 5, 5, 0, 0, 6, 0, 5, 5, 5, 1} (mod 10).
		

Crossrefs

Column 10 of A349593. A062383, A064235 (if offset 0), A385552, and A385553 are respectively columns 2, 3, 5, and 6.

Programs

  • PARI
    a(n) = if(n, (2^(logint(n,2)+1)) * (5^(logint(n,5)+1)), 1)

Formula

a(n) = (the smallest power of 2 > n) * (the smallest power of 5 > n) = A062383(n) * A385552(n). For the general result, see A349593.