A385566 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^6, where 0 < x < y < z has exactly n integer solutions.
3, 6, 16, 12, 27, 63, 38, 24, 94, 18, 123, 42, 93, 75, 141, 48, 66, 36, 153, 60, 140, 96, 279, 114, 200, 138, 410, 174, 72, 126, 186, 168, 204, 150, 108, 426, 132, 220, 418, 246, 498, 736, 144, 120, 294, 306, 210, 666, 282, 378, 252, 770, 216, 460, 462, 534, 180
Offset: 1
Keywords
Examples
a(3)=16, because 16^6 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3 and no integer less than 16 has 3 solutions.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..104
Programs
-
Mathematica
s = Table[{k, Length@Select[PowersRepresentations[k^6, 3, 3], 0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 30}]; a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]
Extensions
a(41)-a(57) from Chai Wah Wu, Jul 07 2025