A385577 Array read by ascending antidiagonals: A(n,m) = n*Pochhammer(n+1,m+1)/(m+2).
0, 1, 0, 3, 2, 0, 6, 8, 6, 0, 10, 20, 30, 24, 0, 15, 40, 90, 144, 120, 0, 21, 70, 210, 504, 840, 720, 0, 28, 112, 420, 1344, 3360, 5760, 5040, 0, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 0, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880, 0
Offset: 0
Examples
Array begins as: 0, 0, 0, 0, 0, 0, 0, ... 1, 2, 6, 24, 120, 720, 5040, ... 3, 8, 30, 144, 840, 5760, 45360, ... 6, 20, 90, 504, 3360, 25920, 226800, ... 10, 40, 210, 1344, 10080, 86400, 831600, ... ...
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 20.
Links
- Paul W. Haggard and Bonnie L. Sadler, A Generalization of Triangular Numbers, International Journal of Mathematical Education in Science and Technology 25 (2): 195-202, (1994).
Crossrefs
Programs
-
Mathematica
A[n_,m_]:=n*Pochhammer[n+1,m+1]/(m+2); Table[A[n-m,m],{n,0,9},{m,0,n}]//Flatten