cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385598 The u sequence in quartets (4,u,v,w); i.e., values of u for solutions to 4(4+u) = v(v+w), in positive integers, v>m, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

6, 8, 10, 11, 11, 14, 14, 16, 16, 17, 17, 18, 20, 20, 21, 22, 23, 23, 24, 24, 26, 26, 26, 26, 28, 29, 29, 30, 31, 31, 31, 32, 32, 32, 34, 35, 35, 36, 36, 36, 38, 38, 38, 38, 40, 40, 41, 41, 41, 41, 41, 42, 44, 44, 44, 45, 46, 46, 46, 47, 47, 48, 48, 50, 50
Offset: 1

Views

Author

Clark Kimberling, Jul 10 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m>v and and m*(m+u) = v*(v+w), with the values of u in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m=4; for m=1, see A385182.

Examples

			First 30 quartets (4,u,v,w):
   m    u    v    w
   4    6    5    3
   4    8    6    2
   4   10    7    1
   4   11    5    7
   4   11    6    4
   4   14    6    6
   4   14    8    1
   4   16    5   11
   4   16    8    2
   4   17    6    8
   4   17    7    5
   4   18    8    3
   4   20    6   10
   4   20    8    4
   4   21    5   15
   4   22    8    5
   4   23    6   12
   4   23    9    3
   4   24    7    9
   4   24    8    6
   4   26    5   19
   4   26    6   14
   4   26    8    7
   4   26   19    2
   4   28    8    8
   4   29    6   16
   4   29   11    1
   4   30    8    9
   4   31    5   23
   4   31    7   13
4(4+16) = 5(5+11) = 8(8+2), so (4,16,5,11) and (4,16,8,2) are rows.
		

Crossrefs

Programs

  • Mathematica
    Clear[solnsM];
    solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching},
    Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}];
    rhs = GatherBy[rhs, First];
    Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &];
    If[Length[matching] > 0, Do[AppendTo[ans,
    Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i,
    Length[matching]}]], {u, max}];
    ans = Flatten[ans, 1];
    Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &,
    Sort[Select[DeleteDuplicates[
    ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]];
    TableForm[solns = solnsM[4, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}]
    aa = Flatten[solns]
    Map[#[[2]] &, solns]    (* u, A385598 *)
    Map[#[[3]] &, solns]    (* v, A385599 *)
    Map[#[[4]] &, solns]    (* w, A385600 *)
    (*Peter J.C.Moses, Jun 15 2025*)