cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229679 Number of defective 3-colorings of an n X 2 0..2 array connected diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 2, 36, 360, 2688, 17280, 101376, 559104, 2949120, 15040512, 74711040, 363331584, 1736441856, 8178892800, 38050725888, 175154135040, 798863917056, 3614214979584, 16234976378880, 72464688218112, 321607151124480
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Examples

			Some solutions for n=3:
..0..1....0..1....0..1....0..0....0..1....0..0....0..1....0..1....0..1....0..1
..1..1....1..2....1..0....1..0....1..1....0..1....2..0....1..2....2..2....1..1
..1..2....2..2....2..2....1..1....0..1....2..0....2..2....0..1....2..2....2..1
		

Crossrefs

Column 2 of A229685.
Cf. A385601.

Formula

Empirical: a(n) = 12*a(n-1) -48*a(n-2) +64*a(n-3) for n>5.
Empirical g.f.: 2*x^2 - 12*x^3*(3-6*x+8*x^2) / (4*x-1)^3. - R. J. Mathar, Sep 29 2013
Empirical: a(n) = 3*2^(2*n-5)*(3 - 5*n + 2*n^2) for n>2. - Colin Barker, Jun 13 2017
From Enrique Navarrete, Jul 08 2025: (Start)
The above empirical formulas are correct.
a(n) = 3*binomial(2*(n-1),2)*2^(2*n-5) for n >= 3.
a(n) = 3*A385601(2*(n-1)) for n >= 3. (End)

A386227 Expansion of e.g.f. cosh(x)^2*(1 + x + x^2/2).

Original entry on oeis.org

1, 1, 3, 6, 20, 40, 152, 224, 1024, 1152, 6272, 5632, 35840, 26624, 194560, 122880, 1015808, 557056, 5144576, 2490368, 25427968, 11010048, 123207680, 48234496, 587202560, 209715200, 2759852032, 905969664, 12817793024, 3892314112, 58921582592, 16642998272, 268435456000, 70866960384
Offset: 0

Views

Author

Enrique Navarrete, Jul 15 2025

Keywords

Comments

a(n) is the number of ternary strings of length n that contain at most two 1's, an even number of 0's, and an even number of 2's.

Examples

			a(5) = 40 since the strings are the 30 permutations of 10022, the 5 permutations of 10000, and the 5 permutations of 12222.
a(6) = 152 since the strings are (number of permutations in parentheses): 110022 (90), 110000 (15), 112222 (15), 000022(15), 002222 (15), 222222 (1), 000000 (1).
		

Crossrefs

Formula

a(n) = n*2^(n-2) for odd n >= 3.
a(n) = 2^(n-3)*(binomial(n,2) + 4) for even n >= 4.
a(2n+1) = A229580(n+1).
G.f.: (1 + x - 9*x^2 - 6*x^3 + 32*x^4 + 16*x^5 - 8*x^6 - 32*x^7 - 32*x^8)/((1 - 2*x)^3*(1 + 2*x)^3).
Showing 1-2 of 2 results.