A385587 Galileo sequence with ratio k = 4: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
1, 4, 9, 11, 22, 23, 27, 28, 54, 56, 57, 58, 67, 68, 69, 71, 134, 136, 139, 141, 142, 143, 144, 146, 167, 168, 169, 171, 172, 173, 177, 178, 334, 336, 339, 341, 347, 348, 352, 353, 354, 356, 357, 358, 359, 361, 364, 366, 417, 418, 419, 421, 422, 423, 427, 428, 429
Offset: 1
Examples
1/4 = (1 + 4)/(9 + 11) = (1 + 4 + 9)/(11 + 22 + 23) = ...
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 23.
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
k=4; a[1]=1; a[2]=k; a[n_]:=a[n]=If[OddQ[n],Floor[((k+1)*a[(n+1)/2]-1)/2],Floor[(k+1)*a[n/2]/2]+1]; Array[a,57]
Comments