A385644 Swap multiplication and exponentiation in the canonical prime factorization of n.
2, 3, 4, 5, 8, 7, 6, 6, 32, 11, 64, 13, 128, 243, 8, 17, 64, 19, 1024, 2187, 2048, 23, 216, 10, 8192, 9, 16384, 29, 14134776518227074636666380005943348126619871175004951664972849610340958208, 31, 10, 177147, 131072, 78125, 4096, 37, 524288, 1594323, 7776, 41
Offset: 2
Keywords
Examples
a(6) = a(2 * 3) = 2^3 = 8, a(24) = a(2^3 * 3) = (2 * 3)^3 = 216, a(30) = a(2 * 3 * 5) = 2^3^5 = 2^243.
Links
- Jens Ahlström, Table of n, a(n) for n = 2..65
Programs
-
Mathematica
f[{p_,e_}]:=p*e;a[n_]:=Module[{pp=f/@FactorInteger[n]},r=pp[[-1]];Do[r=pp[[Length[pp]-i]]^r,{i,1,Length[pp]-1}];r];Array[a,40,2] (* James C. McMahon, Jul 11 2025 *) A385644[n_] := Power @@ Times @@@ FactorInteger[n]; Array[A385644, 40, 2] (* Paolo Xausa, Jul 14 2025 *)
-
Python
from sympy import factorint from functools import reduce def rpow(a, b): return b**a def a(n): return reduce(rpow, [p*e for p, e in reversed(factorint(n).items())]) print([a(n) for n in range(2, 42)])
Comments