cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385640 Numbers k such that the sum of the digits of k divides k and the sum of the digits of k^2 divides k^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 12, 18, 20, 21, 24, 30, 36, 42, 45, 48, 54, 60, 63, 72, 80, 84, 90, 100, 102, 108, 110, 111, 112, 117, 120, 126, 132, 140, 144, 150, 156, 162, 180, 190, 198, 200, 201, 204, 207, 210, 216, 220, 234, 240, 243, 252, 264, 270, 288, 300, 306, 315
Offset: 1

Views

Author

Vighnesh Patil, Jul 05 2025

Keywords

Comments

If k is in the sequence then so is 10*k. - David A. Corneth, Jul 06 2025

Examples

			18 is a term since 1+8 = 9 and 18 mod 9 = 0; also, 18^2 = 324, and 3+2+4 = 9 and 324 mod 9 = 0.
		

Crossrefs

Intersection of A005349 and A385656.
Cf. A007953.

Programs

  • Mathematica
    A385640Q[k_] :=  Divisible[k, DigitSum[k]] && Divisible[k^2, DigitSum[k^2]];
    Select[Range[500], A385640Q] (* Paolo Xausa, Jul 06 2025 *)
  • Python
    def digit_sum(n): return sum(int(d) for d in str(n))
    def ok(n):
        return n % digit_sum(n) == 0 and (n**2) % digit_sum(n**2) == 0
    print([n for n in range(1, 400) if ok(n)])

Formula

A005349(a(n)) | a(n) and A005349(a(n)^2) | a(n)^2.
{k | k in A005349 and k^2 in A005349}. - Michael S. Branicky, Jul 05 2025
Showing 1-1 of 1 results.