cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386872 Smallest k for which A385662(k) = n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 6, 12, 18, 24, 54, 48, 72, 96, 270, 120, 450, 384, 288, 240, 2310, 360, 1890, 480, 1152, 3150, 4050, 720, 2592, 6930, 1800, 1920, 17010, 1440
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2025

Keywords

Crossrefs

Programs

  • PARI
    f(n) = sumdiv(n, d, Mod(d, n)^d == Mod(-d, n)^d); \\ A385662
    a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Aug 06 2025

A386310 Number of divisors d of n such that 2*d^d == 0 (mod n).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 2, 1, 6, 1, 3, 1, 2, 1, 2, 1, 2, 2, 5, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 5, 1, 4, 2, 4
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 20 2025

Keywords

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
    
  • Mathematica
    Table[Length[Select[Divisors[n], PowerMod[#, #, n] == Mod[n - PowerMod[#, #, n], n] &]], {n, 1, 100}] (* Vaclav Kotesovec, Aug 23 2025 *)
  • PARI
    a(n) = sumdiv(n, d, 2*Mod(d, n)^d == 0); \\ Michel Marcus, Aug 30 2025
Showing 1-2 of 2 results.