A385665 Triangle read by rows: T(n,k) is the number of 2n-bead balanced bicolor necklaces that can be rotated into their complements in k different ways.
1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 3, 0, 0, 0, 1, 5, 1, 1, 0, 0, 1, 9, 0, 0, 0, 0, 0, 1, 16, 2, 0, 1, 0, 0, 0, 1, 28, 0, 1, 0, 0, 0, 0, 0, 1, 51, 3, 0, 0, 1, 0, 0, 0, 0, 1, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 170, 5, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: k 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 A000013(n) n 1 1 . . . . . . . . . . . . . . . 1 2 1 1 . . . . . . . . . . . . . . 2 3 1 . 1 . . . . . . . . . . . . . 2 4 2 1 . 1 . . . . . . . . . . . . 4 5 3 . . . 1 . . . . . . . . . . . 4 6 5 1 1 . . 1 . . . . . . . . . . 8 7 9 . . . . . 1 . . . . . . . . . 10 8 16 2 . 1 . . . 1 . . . . . . . . 20 9 28 . 1 . . . . . 1 . . . . . . . 30 10 51 3 . . 1 . . . . 1 . . . . . . 56 11 93 . . . . . . . . . 1 . . . . . 94 12 170 5 2 1 . 1 . . . . . 1 . . . . 180 13 315 . . . . . . . . . . . 1 . . . 316 14 585 9 . . . . 1 . . . . . . 1 . . 596 15 1091 . 3 . 1 . . . . . . . . . 1 . 1096 16 2048 16 . 2 . . . 1 . . . . . . . 1 2068 Examples for n=4 with necklaces of length 8: T(4, 1) = 2 necklaces can be rotated into their complements in k=1 way: 00001111 can be turned into 11110000 by rotating 4 places to the right. 00101101 can be turned into 11010010 by rotating 4 places to the right. T(4, 2) = 1 necklace can be rotated into its complement in k=2 ways: 00110011 can be turned into 11001100 by rotating 2 or 6 places to the right. T(4, 4) = 1 necklace can be rotated into its complement in k=4 ways: 01010101 can be turned into 10101010 by rotating 1, 3, 5 or 7 places to the right.
Links
- Tilman Piesk, Rows 1..32, flattened
- Tilman Piesk, Triangle T(n,k)*2*n/k with row sums A045654(n)
Formula
T(n,k) = A000048(n/k) iff n divisible by k, otherwise 0.
Comments