cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385676 Least prime p <= 2*n^2 - n + 1 such that the polynomial Sum_{k=1..n} sigma(k) * x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where sigma is given by A000203.

Original entry on oeis.org

1, 2, 3, 2, 1, 5, 11, 29, 2, 47, 5, 31, 13, 379, 37, 251, 23, 29, 67, 97, 41, 131, 11, 173, 41, 139, 79, 103, 281, 19, 7, 53, 71, 281, 131, 19, 3, 43, 149, 23, 347, 47, 29, 107, 107, 47, 823, 47, 311, 547, 67, 419, 263, 379, 349, 23, 227, 349, 19, 113
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 04 2025

Keywords

Comments

Conjecture: a(n) > 1 except for n = 1, 5.
Note that Sum_{k=1..5} sigma(k) * x^(5-k) = x^4 + 3*x^3 + 4*x^2 + 7*x + 6 = (x + 2)*(x^3 + x^2 + 2*x + 3).
See A385678 for a similar conjecture involving Euler's totient function.

Examples

			a(14) = 379 since 379 = 2*14^2 - 14 + 1 is the least prime p such that Sum_{k=1..14} sigma(k) * x^(14-k) is irreducible modulo p.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=sigma[n]=DivisorSigma[1,n];
    P[n_, x_]:=P[n, x]=Sum[sigma[k]*x^(n-k), {k, 1, n}];
    tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n^2-n+1]}];
    tab=Append[tab,1]; Label[aa]; Continue, {n, 1, 60}];Print[tab]
  • PARI
    a(n) = forprime(p=2, 2*n^2 - n + 1, if (polisirreducible(Mod(sum(k=1, n, sigma(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025