A385679 Numbers k that are not congruent to a square mod sopfr(k).
8, 10, 12, 14, 15, 18, 20, 24, 26, 28, 32, 33, 34, 35, 38, 39, 40, 42, 44, 50, 51, 54, 55, 57, 58, 62, 63, 65, 66, 68, 74, 76, 77, 78, 80, 82, 85, 86, 87, 88, 91, 92, 94, 95, 96, 98, 99, 106, 110, 111, 112, 114, 115, 116, 117, 119, 122, 123, 124, 125, 129, 130, 132, 134, 136, 138, 140, 143, 146
Offset: 1
Keywords
Examples
a(3) = 12 is a term because A001414(12) = 2*2+3 = 7 and 12 is a quadratic nonresidue mod 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001414.
Programs
-
Maple
sopfr:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc: filter:= x -> numtheory:-quadres(x,sopfr(x))=-1: select(filter, [$2..1000]);
-
PARI
isok(k) = if (k>1, my(f=factor(k)); !issquare(Mod(k, sum(i=1, #f~, f[i, 1]*f[i, 2])))); \\ Michel Marcus, Aug 04 2025
Comments