A385704 Complement of A184535.
3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1
Crossrefs
Cf. A184535.
Programs
-
Mathematica
m[n_]:=Floor[Sqrt[5n/3]];a[n_]:=If[n+m[n]>=Floor[3(m[n]+1)^2/5],n+m[n]+1,n+m[n]];Array[a,67] (* James C. McMahon, Aug 06 2025 *)
-
Python
from math import isqrt def A385704(n): return n+(m:=isqrt(5*n//3))+(n+m>=3*(m+1)**2//5)
Formula
a(n) = n+m+1 if n+m>=floor(3*(m+1)^2/5) and a(n) = n+m otherwise where m = floor(sqrt(5*n/3)).
Comments