A385731 Number of divisors d of n such that (-d) == (-d)^d == d^d (mod n).
1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1
Keywords
Programs
-
Magma
[#[d: d in Divisors(n) | Modexp(d, d, n) eq n-d and Modexp(-d, d, n) eq n-d]: n in [1..100]];
-
Mathematica
a[n_]:=Length[Select[Divisors[n],Mod[-#,n]==PowerMod[-#,#,n]==PowerMod[#,#,n]&]];Array[a,100] (* James C. McMahon, Jul 21 2025 *)
-
PARI
a(n) = sumdiv(n, d, (-d == Mod(d, n)^d) && (-d == Mod(-d, n)^d)); \\ Michel Marcus, Jul 09 2025