cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385731 Number of divisors d of n such that (-d) == (-d)^d == d^d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | Modexp(d, d, n) eq n-d and Modexp(-d, d, n) eq n-d]: n in [1..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Divisors[n],Mod[-#,n]==PowerMod[-#,#,n]==PowerMod[#,#,n]&]];Array[a,100] (* James C. McMahon, Jul 21 2025 *)
  • PARI
    a(n) = sumdiv(n, d, (-d == Mod(d, n)^d) && (-d == Mod(-d, n)^d)); \\ Michel Marcus, Jul 09 2025