A385732 Triangle read by rows: the numerators of the Lucas triangle.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 28, 7, 1, 1, 11, 77, 77, 11, 1, 1, 18, 66, 231, 66, 18, 1, 1, 29, 174, 957, 957, 174, 29, 1, 1, 47, 1363, 4089, 44979, 4089, 1363, 47, 1, 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1, 1, 123, 3116, 36613, 1061777, 19111986, 1061777, 36613, 3116, 123, 1
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 1; [2] 1, 3, 1; [3] 1, 4, 4, 1; [4] 1, 7, 28, 7, 1; [5] 1, 11, 77, 77, 11, 1; [6] 1, 18, 66, 231, 66, 18, 1; [7] 1, 29, 174, 957, 957, 174, 29, 1; [8] 1, 47, 1363, 4089, 44979, 4089, 1363, 47, 1; [9] 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1;
Links
- Donald E. Knuth and Herbert S. Wilf, The Power of a Prime that Divides a Generalized Binomial Coefficient, J. Reine Angew. Math. 396 (1989), 212-219.
- Edouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American Journal of Mathematics 1 (1878), 184-240, §9.
- Diana L. Wells, The Fibonacci and Lucas triangles modulo 2, Fibonacci Quart. 32, no. 2 (1994), p. 112.
Crossrefs
Programs
-
Maple
c := arccsch(2) - I*Pi/2: LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k): T := (n, k) -> numer(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..10);
-
Mathematica
T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Numerator
Formula
LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If in this formula cosh is substituted by sinh one gets the Fibonomial triangle A010048.
T(n, k) = numerator(LT(n, k)).