cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385732 Triangle read by rows: the numerators of the Lucas triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 28, 7, 1, 1, 11, 77, 77, 11, 1, 1, 18, 66, 231, 66, 18, 1, 1, 29, 174, 957, 957, 174, 29, 1, 1, 47, 1363, 4089, 44979, 4089, 1363, 47, 1, 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1, 1, 123, 3116, 36613, 1061777, 19111986, 1061777, 36613, 3116, 123, 1
Offset: 0

Views

Author

Peter Luschny, Jul 08 2025

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,    1;
  [3] 1,  4,    4,     1;
  [4] 1,  7,   28,     7,      1;
  [5] 1, 11,   77,    77,     11,      1;
  [6] 1, 18,   66,   231,     66,     18,     1;
  [7] 1, 29,  174,   957,    957,    174,    29,    1;
  [8] 1, 47, 1363,  4089,  44979,   4089,  1363,   47,  1;
  [9] 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1;
		

Crossrefs

Cf. A385733 (denominators), A070825 (Lucanorial), A003266 (Fibonorial), A010048 (Fibonomial).

Programs

  • Maple
    c := arccsch(2) - I*Pi/2:
    LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k):
    T := (n, k) -> numer(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]];
    Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Numerator

Formula

LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If in this formula cosh is substituted by sinh one gets the Fibonomial triangle A010048.
T(n, k) = numerator(LT(n, k)).