A385733 Triangle read by rows: the denominators of the Lucas triangle.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 14, 2, 3, 1, 1, 1, 1, 3, 3, 7, 7, 3, 3, 1, 1, 1, 1, 1, 1, 7, 77, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7, 77, 77, 7, 1, 1, 1, 1, 1, 1, 3, 2, 1, 11, 99, 11, 1, 2, 3, 1, 1
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 1; [2] 1, 1, 1; [3] 1, 1, 1, 1; [4] 1, 1, 3, 1, 1; [5] 1, 1, 3, 3, 1, 1; [6] 1, 1, 1, 2, 1, 1, 1; [7] 1, 1, 1, 2, 2, 1, 1, 1; [8] 1, 1, 3, 2, 14, 2, 3, 1, 1; [9] 1, 1, 3, 3, 7, 7, 3, 3, 1, 1;
Links
- Diana L. Wells, The Fibonacci and Lucas triangles modulo 2, Fibonacci Quart. 32, no. 2 (1994), p. 112.
Crossrefs
Programs
-
Maple
c := arccsch(2) - I*Pi/2: LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k): T := (n, k) -> denom(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..12);
-
Mathematica
T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Denominator
Formula
LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit.
T(n, k) = denominator(LT(n, k)).