cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385736 a(n) is the number of distinct nondegenerate triangles with perimeter n whose side lengths are triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Felix Huber, Jul 16 2025

Keywords

Comments

0, 1, 6, 10, 28, 55 are the only triangular numbers <= 10^6 that are not perimeters of triangles whose side lengths are triangular numbers. Conjecture: There are no other triangular numbers that have this property.

Examples

			The a(31) = 2 distinct nondegenerate triangles with perimeter 31 and whose side lengths are triangular numbers are [1, 15, 15] and [6, 10, 15].
		

Crossrefs

Programs

  • Maple
    A385736:=proc(N) # To get the first N + 1 terms.
        local p,x,y,z,i;
        p:=[];
        for z to floor((sqrt(24*N+9)-3)/6) do
            for x from z to floor((sqrt(4*N-3)-1)/2) do
                for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*N-x^2-x-z^2-z))-1)/2)) do
                    p:=[op(p),z*(z+1)/2+y*(y+1)/2+x*(x+1)/2]
                od
            od
        od;
        return seq(numboccur(p,i),i=0..N)
    end proc;
    A385736(87);

Formula

Trivial upper bound: a(n) <= A005044(n).
a(A385737(n)) >= 1.