A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers.
176, 224, 264, 336, 504, 644, 756, 950, 1196, 1232, 1280, 1500, 1566, 1650, 1700, 2100, 2112, 2250, 2366, 2754, 3036, 3306, 5676, 5796, 7296, 8064, 8316, 8526, 9576, 10206, 10260, 12474, 13200, 15872, 16236, 16896, 17094, 17150, 20172, 21714, 21726, 22382, 22644
Offset: 1
Keywords
Examples
176 is a term because it is the perimeter of the triangle [55, 55, 66], where 55 and 66 are triangular numbers, which has an integer area of sqrt(88*(88 - 55)*(88 - 55)*(88 - 66)) = 1452. 224 is a term because it is the perimeter of the triangle [28, 91, 105], where 28, 91 and 105 are triangular numbers, which has an integer area of sqrt(112*(112 - 28)*(112 - 91)*(112 - 105)) = 1176 (which is also a triangular number).
Links
- Felix Huber, Table of n, a(n) for n = 1..315
- Felix Huber, Maple program to compute the triangles (incl. areas) with perimeter a(n)
- Eric Weisstein's World of Mathematics, Triangular Number
Programs
-
Maple
A385737:=proc(P) # To get all perimeters <= P. local p,x,y,z,u,v,w,s; p:=[]; for z to floor((sqrt(24*P+9)-3)/6) do for x from z to floor((sqrt(4*P-3)-1)/2) do for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do u:=z*(z+1)/2; v:=y*(y+1)/2; w:=x*(x+1)/2; s:=(u+v+w)/2; if issqr(s*(s-u)*(s-v)*(s-w)) then p:=[op(p),u+v+w] fi od od od; return op(sort(p)) end proc; A385737(22644);
Comments