cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A386018 Primes having only {0, 1, 2, 5} as digits.

Original entry on oeis.org

2, 5, 11, 101, 151, 211, 251, 521, 1021, 1051, 1151, 1201, 1511, 2011, 2111, 2221, 2251, 2521, 2551, 5011, 5021, 5051, 5101, 5501, 5521, 10111, 10151, 10211, 10501, 11251, 11551, 12011, 12101, 12211, 12251, 12511, 15101, 15121, 15511, 15551, 20011, 20021, 20051
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199325, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 5]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 5}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0125"), 41))) # uses function/imports in A385776
    

A386086 Primes having only {1, 2, 3, 5} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 23, 31, 53, 113, 131, 151, 211, 223, 233, 251, 311, 313, 331, 353, 521, 523, 1123, 1151, 1153, 1213, 1223, 1231, 1321, 1511, 1523, 1531, 1553, 2111, 2113, 2131, 2153, 2213, 2221, 2251, 2311, 2333, 2351, 2521, 2531, 2551, 3121, 3221, 3251, 3253
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Subsequence of A190222.
Supersequence of A062350, A214703, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 3, 5]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 3, 5}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 3, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1235"), 41))) # uses function/imports in A385776
    

A386091 Primes having only {1, 2, 4, 5} as digits.

Original entry on oeis.org

2, 5, 11, 41, 151, 211, 241, 251, 421, 521, 541, 1151, 1451, 1511, 2111, 2141, 2221, 2251, 2411, 2441, 2521, 2551, 4111, 4211, 4241, 4421, 4441, 4451, 5441, 5521, 11251, 11411, 11551, 12211, 12241, 12251, 12421, 12451, 12511, 12541, 14221, 14251, 14411, 14551
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A260267, A260268, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 4, 5]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 4, 5}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 4, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1245"), 41))) # uses function/imports in A385776
    

A386095 Primes having only {1, 2, 5, 6} as digits.

Original entry on oeis.org

2, 5, 11, 61, 151, 211, 251, 521, 661, 1151, 1511, 1621, 2111, 2161, 2221, 2251, 2521, 2551, 2621, 5261, 5521, 5651, 6121, 6151, 6211, 6221, 6521, 6551, 6661, 11161, 11251, 11261, 11551, 11621, 12161, 12211, 12251, 12511, 12611, 15121, 15161, 15511, 15551, 15661
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A385773, A385774, A385779.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 6]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 6}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1256"), 41))) # uses function/imports in A385776
    

A386096 Primes having only {1, 2, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 11, 17, 71, 127, 151, 157, 211, 227, 251, 257, 271, 277, 521, 557, 571, 577, 727, 751, 757, 1117, 1151, 1171, 1217, 1277, 1511, 1571, 1721, 1777, 2111, 2221, 2251, 2521, 2551, 2557, 2711, 2777, 5171, 5227, 5521, 5527, 5557, 5711, 5717, 7121, 7127, 7151
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A214705, A260828, A260889, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1257"), 41))) # uses function/imports in A385776
    

A386097 Primes having only {1, 2, 5, 8} as digits.

Original entry on oeis.org

2, 5, 11, 151, 181, 211, 251, 281, 521, 811, 821, 881, 1151, 1181, 1511, 1811, 2111, 2221, 2251, 2281, 2521, 2551, 2851, 5281, 5521, 5581, 5821, 5851, 5881, 8111, 8221, 8521, 8581, 8821, 11251, 11551, 11821, 12211, 12251, 12281, 12511, 12821, 15121, 15511, 15551
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A385773, A385775, A385780.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1258"), 41))) # uses function/imports in A385776
    

A386098 Primes having only {1, 2, 5, 9} as digits.

Original entry on oeis.org

2, 5, 11, 19, 29, 59, 151, 191, 199, 211, 229, 251, 521, 599, 911, 919, 929, 991, 1129, 1151, 1229, 1259, 1291, 1511, 1559, 1951, 1999, 2111, 2129, 2221, 2251, 2521, 2551, 2591, 2999, 5119, 5519, 5521, 5591, 9151, 9199, 9221, 9511, 9521, 9551, 9929, 11119, 11159
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A385773, A385776, A385781, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1259"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.