cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A386040 Primes having only {0, 1, 8, 9} as digits.

Original entry on oeis.org

11, 19, 89, 101, 109, 181, 191, 199, 809, 811, 881, 911, 919, 991, 1009, 1019, 1091, 1109, 1181, 1801, 1811, 1889, 1901, 1999, 8009, 8011, 8081, 8089, 8101, 8111, 8191, 8819, 8999, 9001, 9011, 9091, 9109, 9181, 9199, 9811, 9901, 10009, 10091, 10099, 10111, 10181
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A061247, A199329, A385783.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 8, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 8, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0189"), 41))) # uses function/imports in A385776
    

A386104 Primes having only {1, 2, 8, 9} as digits.

Original entry on oeis.org

2, 11, 19, 29, 89, 181, 191, 199, 211, 229, 281, 811, 821, 829, 881, 911, 919, 929, 991, 1129, 1181, 1229, 1289, 1291, 1811, 1889, 1999, 2111, 2129, 2221, 2281, 2819, 2999, 8111, 8191, 8219, 8221, 8291, 8819, 8821, 8929, 8999, 9181, 9199, 9221, 9281, 9811, 9829
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A385775, A385776, A385783, A385790.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1289"), 41))) # uses function/imports in A385776
    

A386118 Primes having only {1, 3, 8, 9} as digits.

Original entry on oeis.org

3, 11, 13, 19, 31, 83, 89, 113, 131, 139, 181, 191, 193, 199, 311, 313, 331, 383, 389, 811, 839, 881, 883, 911, 919, 983, 991, 1181, 1193, 1319, 1381, 1399, 1811, 1831, 1889, 1913, 1931, 1933, 1993, 1999, 3119, 3181, 3191, 3313, 3319, 3331, 3389, 3391, 3833, 3881
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A329761, A385778, A385783, A385792.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1389"), 41))) # uses function/imports in A385776
    

A386128 Primes having only {1, 4, 8, 9} as digits.

Original entry on oeis.org

11, 19, 41, 89, 149, 181, 191, 199, 419, 449, 491, 499, 811, 881, 911, 919, 941, 991, 1181, 1481, 1489, 1499, 1811, 1889, 1949, 1999, 4111, 4441, 4481, 4889, 4919, 4999, 8111, 8191, 8419, 8819, 8849, 8941, 8999, 9181, 9199, 9419, 9491, 9811, 9941, 9949, 11119
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260270, A260271, A385783, A385796.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 4, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 4, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 4, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1489"), 41))) # uses function/imports in A385776
    

A386134 Primes having only {1, 5, 8, 9} as digits.

Original entry on oeis.org

5, 11, 19, 59, 89, 151, 181, 191, 199, 599, 811, 859, 881, 911, 919, 991, 1151, 1181, 1511, 1559, 1811, 1889, 1951, 1999, 5119, 5189, 5519, 5581, 5591, 5851, 5881, 5981, 8111, 8191, 8581, 8599, 8819, 8951, 8999, 9151, 9181, 9199, 9511, 9551, 9811, 9851, 9859
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A385780, A385781, A385783, A385798.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1589"), 41))) # uses function/imports in A385776
    

A386137 Primes having only {1, 6, 8, 9} as digits.

Original entry on oeis.org

11, 19, 61, 89, 181, 191, 199, 619, 661, 691, 811, 881, 911, 919, 991, 1181, 1619, 1669, 1699, 1811, 1861, 1889, 1999, 6199, 6619, 6661, 6689, 6691, 6869, 6899, 6911, 6961, 6991, 8111, 8161, 8191, 8669, 8681, 8689, 8699, 8819, 8861, 8969, 8999, 9161, 9181, 9199
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A363023, A385782, A385783, A385800.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1689"), 41))) # uses function/imports in A385776
    

A386138 Primes having only {1, 7, 8, 9} as digits.

Original entry on oeis.org

7, 11, 17, 19, 71, 79, 89, 97, 179, 181, 191, 197, 199, 719, 787, 797, 811, 877, 881, 887, 911, 919, 971, 977, 991, 997, 1117, 1171, 1181, 1187, 1777, 1787, 1789, 1811, 1871, 1877, 1879, 1889, 1979, 1987, 1997, 1999, 7177, 7187, 7717, 7789, 7817, 7877, 7879, 7919
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A106110, A260892, A260893, A385783.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 7, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 7, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 7, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1789"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.